IGBT散热材料的四大散热技术发展趋势(二)
发布时间:2022-09-29 浏览次数:456次
IGBT散热材料的四大散热技术发展趋势(二)
1)DBC板及基板:材料迭代
未来DBC板的材料由Al2O3→AlN→Si3N4迭代,基板材料由Cu向AlSiC迭代。基板与DBC板材料、以及DBC板与Si基芯片之间膨胀系数的差异决定了在大的温度变化时连接层是否会出现变形和脱落。DBC板材料需要重点考虑与Si基芯片热膨胀系数的匹配因素,其次考虑是否具备高热导率,目前应用最广的Al2O3陶瓷材料热导率较低、且与芯片的膨胀系数差异较大,局限性很明显,AlN、Si3N4凭借与Si材料更为接近的热膨胀系数、更高热导率开始逐步导入。
基板与散热器直接相连,需要重点考虑热导率,其次考虑与芯片、DBC之间热膨胀系数的匹配,目前常用铜基板来实现快速散热,而AlSiC热导率虽不如铜,但热膨胀系数更接近芯片及DBC,能够有效改善模块的热循环能力,渗透率快速提升。
另外有部分厂商直接采取无基板的设计策略,直接将DBC通过高性能导热硅脂直接压在散热器上,配合银烧结技术最终将其温度循环能力提高15倍。
2)芯片、BC板以及基板间连接方式:SnAg焊接→SnSb焊接、Ag/Cu烧结
目前芯片之间的绑定线、芯片与DBC板及DBC板与基板间的连接普遍通过SnAg焊接的方式,但温度循环产生应力容易导致DBC板和散热基板之间焊接层出现裂缝,焊接老化也会引起芯片温度上升,最终影响模块的寿命。因此SnSb焊接、低温银烧结、铜烧结等技术逐步引入。
其中,Ag烧结层厚度比焊接层至少薄70%,热导率提升3倍,热阻减小为1/15,但成本较高,Cu烧结的抗电子迁移能力及热循环能力更好,成本相较于Ag也明显降低,但烧结易出现氧化,对模块厂商的技术能力要求非常高。
28
2022.03
半导体材料发展前景
随着物联网、大数据和人工智能驱动的新计算时代的发展,对半导体器件的需求日益增长,同时也催生了市场对半导体材料的需求,半导体材料行业迎来快速发展的黄金期。在国家鼓励半导体材料国产化的政策导向下,本土半导体材料厂商不断提升半导体产品技术水平和研发能力,逐渐打破了国外半导体厂商的垄断格局,推进中国半导体材料国产化进程,促进中国半导体材料行业的发展。
数据显示,2017-2019年中国半导体材料市场规模逐年增长,从2017年的76亿美元增长至2020年的94亿美元。据统计,2017-2020年全球62座新投产的晶圆厂中有26座来自中国大陆,占比超过40%,成为增速最快的地区。伴随着5G时代的来临,汽车电动化进程拉动IGBT规模增长。得益于对清洁能源高速增长的需求,IGBT市场规模将持续增长,IGBT市场在2020年的规模为54亿美元,从2020年到2026年将以7.5%的复合年增长率(CAGR)增长,预计2026年市场规模为84亿美元。新能源车应用作为IGBT市场规模的重要增量,2020年市场规模为为5.09亿美元,2020-2026年的复合年增长率为23%,预计2026年新能源车用IGBT市场规模为17亿美元。
随着5G、智慧物联网时代的到来,中国大陆的半导体产业得以在众多领域实现快速与全面布局,正逐步驱使全球半导体产业从韩国、中国台湾向中国大陆转移。目前,我国已经成为最大的半导体市场,并且继续保持最快的增速,预计半导体市场增长将持续带动半导体材料行业快速发展。